Banner
Additive Manufacturing

Raising the bar

Rapid prototyping ability allows British yacht racing team to refine custom parts, reduce costs.

February 2017 - Land Rover Ben Ainsile Racing (BAR) is no stranger to cutting edge technologies. The British yacht racing team, formed by four-time Olympic gold medalist and America’s Cup winner Sir Ben Ainsile, uses artificial intelligence, big data analytics, and most recently, additive manufacturing (3-D printing) to gain competitive advantages. These technologies have been incorporated into daily use at Land Rover BAR by the team’s Technical Innovation Group (TIG). Renishaw, a global metrology company that also manufactures metal additive manufacturing machines, is a TIG partner. The partnership has allowed the team’s engineers to design and test precision custom parts quickly and cost effectively in the shop, and give it an edge on the water.

“We use 3-D printing at three different levels within the team, said TIG project manager, George Sykes of PA Consulting. “The simplest level is as a prototyping and visualization tool. We manufacture a large number of custom parts and 3-D printing allows us to make full size prototypes in-house before we commit to a design.”

LandRoverBAR_Manifold.jpeg

“The prototyping process is really useful when we are trying to develop a new idea,” said Land Rover BAR’s Chief Technology Officer, Andy Claughton. “It allows us to get our hands on it, put it in place on the boat or link it up with other parts of the system and see potential issues and refine the design before we commit to the production of the final piece.”

The team has its own, fully equipped traditional machine shop, as well as an extensive additive shop facility. Between them, these facilities can make almost anything, but if the final part can be 3-D printed then that is the option used, because typically the cost can be significantly reduced. 

“An example is the end cap for the boat’s bowsprit,” addes Sykes. “This is a complex shape, designed to reduce the aerodynamic drag. It was ideal for 3-D printing because there was no load involved, and a single item was required. In years gone by this would have been built in carbon fiber to the finish specs and standards of a piece of custom furniture, and at great expense due to the time and skill of those involved. Now, once the design has been developed it can be produced in a handful of hours at a much lower cost.”

With Renishaw’s help, the Land Rover BAR team is taking additive manufacturing even further. “The top level of our 3-D printing program is the metal additive manufacturing supplied by Renishaw,” continued Sykes. “The manufacture of custom parts in metal is the cutting edge of this technology.”

LandRoverBAR_Parts.jpeg

The components are manufactured from paper thin layers (typically 0.05 mm) of fine metallic powder with the consistency of cornflower. The system works in an argon inert atmosphere – similar to that inside a light bulb; heat can be applied to melt the metal powder without it burning; or reacting with oxygen or impurities found in air. The heat is applied using a laser beam – this is directed using software controlled mirrors, and focused to accurately weld the areas required to create the part.

One of the earliest components the Land Rover BAR team created using this technology was a custom sheave case for the pulley in the daggerboard lift line. “There was a high compressive load involved and it needed good resistance to wear, so metal was the ideal choice,” said Sykes. “All high strength metals have a higher density (weight per volume) than carbon fiber, so to keep weight down the final design was hollow. It would have been very difficult to make this part any other way than additive manufacturing.”

“The potential of additive manufacturing in terms of saving weight and improving efficiency is tremendous,” added Claughton. “For example, we took a long hard look at our hydraulics system. Before 3-D printing came along all the parts in this system would have been manufactured by taking metal away from a solid block. The shapes that you can create with this method are limited, so the design is limited and so too is the efficiency. 

“Hydraulic fluid doesn’t take kindly to going around hard corners for instance, and there is a loss of power when it has to do so. With traditional techniques this might be the only way you can manufacture the part, but with additive manufacturing you can build it with smooth rounded corners that significantly improves efficiency in the fluid transfers involved. 

LandRoverBAR_NoseCone.jpeg

“In addition to the improvements in efficiency, we can now build it much more lightly as we are only adding material specifically where it is needed. In the past, the geometry of manufacture on a lathe or other cutting tool meant that some material couldn’t be removed and we would have to carry around the excess weight. No longer.”

Renishaw has manufactured several parts for the hydraulics, and while the team are reluctant to reveal too much design detail, it has said that weight in a new AM manifold design was reduced by 60 percent, with an increase in performance efficiency of better than 20 percent.

David Ewing, Product Marketing Engineer at Renishaw’s Additive Manufacturing Products Division, commented, “Our involvement with Land Rover BAR is also helping to raise the bar in additive manufacturing. It’s a complex manufacturing option and there are considerations both in component design and process expertise. The best applications are ones which use the minimum amount of material to achieve the design requirements, offer a functional benefit in service and have been designed with the manufacturing method in mind. Our work on hydraulic parts for the team is a perfect example.”

“Renishaw is at the top of this particular game and they have really helped us out with their facilities. This is one technology that’s here to stay and its role within our build processes will only increase in the future,” said Andy Claughton.

Sources

FFJWEB homepage-AMADA2-1

Ermak 17 18 ffjournal banner

LATEST ISSUE  
FFJ Cover 0317 digital

lineclearMARCH 2017

EXCLUSIVE INTERVIEW

Mike Rowe shows Americans there are plenty of jobs if you're willing to change your perception.

> READ THIS
MONTH'S ISSUE

ffj consumables 330 new 10 16

ffjournal update on twitter

Instagram - @FFJournal

FFJournal TV

Banner

Company Profiles

ABRASIVES

DEBURRING FINISHING

PLASMA TECHNOLOGY

SERVICE CENTERS

Walter Surface Technologies Brush Research Manufacturing Koike Aronson Admiral Steel
PFERD Inc. Lissmac Corp. Messer Cutting Systems Ulbrich Stainless Steels & Special Metals

AIR FILTRATION

Osborn

PUNCHES, DIES & SHEARS

STAMPING/PRESSES

Donaldson Company Inc.

LASER TECHNOLOGY

American Punch Co. Beckwood Press Co.

BEVELING

Coherent Inc.

PRESS BRAKE TOOLING

SEYI
Saar-Hartmetall USA Mazak Optonics Corp. Mate Precision Tooling

WATERJET

COIL PROCESSING

METAL FABRICATION MACHINERY

SAWING

OMAX Corp.
Tishken Trilogy Machinery Inc. Tigerstop

WELDING

CUTTING TECHNOLOGY

METAL FORMING

Tsune America LLC Dengensha America Corp.
Hypertherm RAS Systmes LLC

 

Select-Arc

 

MICRO FINISHING TOOLS

 

 

 

Titan Tool Supply, Inc.

 

 

TrendPublishing 6 16

Instagram Icon Large twitter facebook linkedin YouTube-social-square-red rss

MM 0317 brandingcovers2